诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******
相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。
你或身边人正在用的某些药物,很有可能就来自他们的贡献。
2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。
一、夏普莱斯:两次获得诺贝尔化学奖
2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。
今年,他第二次获奖的「点击化学」,同样与药物合成有关。
1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。
过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。
虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。
虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。
有机催化是一个复杂的过程,涉及到诸多的步骤。
任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。
不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。
为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。
点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。
点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。
夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。
大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。
大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。
大自然的一些催化过程,人类几乎是不可能完成的。
一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。
夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?
大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。
在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。
其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。
诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:
夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。
他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。
「点击化学」的工作,建立在严格的实验标准上:
反应必须是模块化,应用范围广泛
具有非常高的产量
仅生成无害的副产品
反应有很强的立体选择性
反应条件简单(理想情况下,应该对氧气和水不敏感)
原料和试剂易于获得
不使用溶剂或在良性溶剂中进行(最好是水),且容易移除
可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定
反应需高热力学驱动力(>84kJ/mol)
符合原子经济
夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。
他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。
二、梅尔达尔:筛选可用药物
夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。
他就是莫滕·梅尔达尔。
梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。
为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。
他日积月累地不断筛选,意图筛选出可用的药物。
在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。
三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。
2002年,梅尔达尔发表了相关论文。
夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。
三、贝尔托齐西:把点击化学运用在人体内
不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。
虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。
诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。
她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。
这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。
卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。
20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。
然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。
当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。
后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。
由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。
经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。
巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。
虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。
就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。
她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。
大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。
2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。
贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。
在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。
目前该药物正在晚期癌症病人身上进行临床试验。
不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。
「 点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)
参考
https://www.nobelprize.org/prizes/chemistry/2001/press-release/
Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.
Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.
Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.
https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf
https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf
Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.
应急管理部公布2020年全国十大自然灾害******
中新网1月2日电 应急管理部官方微博2日公布2020年全国十大自然灾害,7月份长江淮河流域特大暴雨洪涝灾害、台风“黑格比”、新疆伽师6.4级地震等灾害在列。
2020年,中国气候年景偏差,主汛期南方地区遭遇1998年以来最重汛情,自然灾害以洪涝、地质灾害、风雹、台风灾害为主,地震、干旱、低温冷冻、雪灾、森林草原火灾等灾害也有不同程度发生,经应急管理部会同工业和信息化部、自然资源部、住房城乡建设部、交通运输部、水利部、农业农村部、卫生健康委、统计局、气象局、银保监会、粮储局、中央军委联合参谋部和政治工作部、红十字会总会、国铁集团等国家减灾委成员单位会商核定,全年各种自然灾害共造成1.38亿人次受灾,591人死亡失踪,10万间房屋倒塌,176万间房屋损坏,农作物受灾面积19957.7千公顷,直接经济损失3701.5亿元。
与近5年均值相比,2020年全国因灾死亡失踪人数下降43%,其中因洪涝灾害死亡失踪279人、下降53%,均为历史新低。
2020年全国十大自然灾害如下:
1、7月份长江淮河流域特大暴雨洪涝灾害
7月份,长江、淮河流域连续遭遇5轮强降雨袭击,长江流域平均降雨量(259.6毫米)较常年同期偏多58.8%,为1961年以来同期最多,长江发生3次编号洪水;淮河流域平均降雨量(256.5毫米)较常年同期偏多33%。受强降雨影响,淮河流域江河来水偏多1.5-2倍、长江中下游流域偏多4-6成,引发严重洪涝灾害。灾害造成安徽、江西、湖北、湖南、浙江、江苏、山东、河南、重庆、四川、贵州11省(市)3417.3万人受灾,99人死亡,8人失踪,299.8万人紧急转移安置,144.8万人需紧急生活救助;3.6万间房屋倒塌,42.2万间不同程度损坏;农作物受灾面积3579.8千公顷,其中绝收893.9千公顷;直接经济损失1322亿元。
2、8月中旬川渝及陕甘滇严重暴雨洪涝灾害
8月10-17日,西南地区东部、四川盆地至陕西、甘肃等地连续出现多轮强降雨过程。其中,四川盆地中西部和甘肃南部降水量较常年同期偏多2到4倍,陕西西南部及云南偏多五成。强降雨引发长江上游发生特大洪水,三峡水库出现建库以来最大入库流量75000立方米每秒,多地暴发山洪、泥石流等灾害。灾害造成四川、重庆、陕西、甘肃、云南5省(市)53市(州)852.3万人受灾,58人死亡,13人失踪,107.1万人紧急转移安置,8.3万人需紧急生活救助;2.3万间房屋倒塌,35万间不同程度损坏;农作物受灾面积331.1千公顷,其中绝收58.6千公顷;直接经济损失609.3亿元。
3、6月上中旬江南华南等地暴雨洪涝灾害
6月2-14日,江南、华南及贵州等地出现多轮强降雨天气,且降雨落区重叠。其中,6月5-10日,广西东北部、广东中东部等地降雨量达300~500毫米,广东惠州和汕尾局地600~979毫米。受连续强降雨影响,广西西江干流及支流、广东北江中游及支流80余条河流发生超警以上洪水,其中广西柳江支流洛清江、广东北江支流潖江等5条河流发生超历史洪水,引发洪涝及次生地质灾害。灾害造成广东、广西、湖南、贵州、浙江、福建、江西、湖北8省(区)714.4万人受灾,54人死亡,9人失踪,47.5万人紧急转移安置,20.1万人需紧急生活救助;近6700间房屋倒塌,6.6万间不同程度损坏;农作物受灾面积577.5千公顷,其中绝收62.5千公顷;直接经济损失210.6亿元。
4、6月下旬西南等地暴雨洪涝灾害
6月20-28日,重庆、四川、贵州至长江中下游地区遭遇两次降雨过程。其中,20-25日,上述地区累计降雨量超过100毫米的面积达33万平方公里,重庆南川、贵州黄平和惠水、湖南常宁日降雨量达到或突破当地6月历史极值;重庆、四川、贵州等多省共计58条河流发生超警以上洪水,16条河流发生超保洪水,3条中小河流发生超历史洪水,重庆綦江五岔站水位、流量为有资料以来第1位。26-28日,川渝至长江中下游出现新一轮强降雨过程,暴雨区域北移,四川盆地、重庆西南部、贵州北部、湖北东部和西南部、安徽北部、江苏中部等地大部地区相继出现大到暴雨,四川东部、湖北北部、安徽北部等地局地降雨量达250~300毫米。两轮降雨过程引发洪涝灾害,造成四川、贵州、重庆、湖南、安徽、江西、湖北7省(市)597.8万人受灾,36人死亡,3人失踪,24.9万人紧急转移安置,9.9万人需紧急生活救助;4100余间房屋倒塌,4.3万间不同程度损坏;农作物受灾面积438.6千公顷,其中绝收48千公顷;直接经济损失113.7亿元。
5、2020年第4号台风“黑格比”
2020年第4号台风“黑格比”于8月4日凌晨3时30分前后以近巅峰强度在浙江省乐清市沿海登陆,登陆时中心附近最大风力有13级(38m/s)。受其影响,3-5日,浙江温州、台州、金华等地部分地区累计降雨量250~350毫米,温州永嘉和乐清局地达400~552毫米。灾害造成浙江、上海2省(市)5市30个县(市、区)188万人受灾,5人死亡,32.7万人紧急转移安置,1.2万人需紧急生活救助;4300余间房屋倒塌,8000余间不同程度损坏;农作物受灾面积76.3千公顷,其中绝收6.3千公顷;直接经济损失104.6亿元。
6、云南巧家5.0级地震
5月18日21时47分,云南昭通市巧家县(北纬27.18度,东经103.16度)发生5.0级地震,震源深度8公里。地震造成昭通市巧家、鲁甸2县4人死亡(巧家县小河镇2人因房屋倒塌致死、新店镇1人因滚石砸中致死,鲁甸县乐红乡1人因滚石砸中致死),28人受伤(巧家县26人,鲁甸县2人),1151间房屋损坏,直接经济损失1.01亿元。
7、新疆伽师6.4级地震
1月19日21时27分,新疆喀什地区伽师县(北纬39.83度,东经77.21度)发生6.4级地震,震源深度16公里,此后震中附近又相继发生1次5.2级余震和数次4.0级以上余震。地震造成1人死亡、2人轻伤,4000余间房屋不同程度损坏,部分道路、桥梁、水库等设施受损,直接经济损失16.2亿元。
8、东北台风“三连击”
8月下旬至9月上旬,两周内第8号台风“巴威”、第9号台风“美莎克”和第10号台风“海神”先后北上影响东北地区,间隔时间短、影响区域高度重叠,造成东北地区半个月内平均降水量达170.1毫米,较常年同期偏多3倍,为1961年以来历史同期最多。台风带来的降雨造成嫩江、松花江、黑龙江等主要江河长时间超警,大风造成黑龙江、吉林等地玉米等农作物大面积倒伏,直接经济损失128亿元。
9、4月下旬华北西北低温冷冻灾害
4月19-25日,华北、西北出现持续大范围大风降温天气过程,局地伴有沙尘天气,其中河北西北部、北京中西部、内蒙古东南部和中部偏南地区等地8级以上阵风出现时长有24-45小时,内蒙古东南部超过48小时;山西大同市阳高县、云冈区部分地区最低气温降至-9℃。持续大风低温造成大面积坐果期果树冻伤、大棚损毁、蔬菜受冻。灾害造成河北、山西、内蒙古、黑龙江、陕西、甘肃、宁夏7省(区)432.3万人受灾,农作物受灾面积530.1千公顷,其中绝收154.1千公顷,直接经济损失82亿元。
10、云南春夏连旱
2020年入春后,云南持续高温少雨引发严重旱情,其中,普洱南部、西双版纳降水偏少6~8成;3月份全省平均气温达17℃,较常年同期偏高1.5℃,为历史同期第3高,造成部分城市供水紧张、农村人畜饮水困难。4月底,部分地区出现降雨,旱情得到一定程度缓解。5月1-14日,全省再次出现高温少雨天气,全省有96个站点共出现30℃以上高温791站次;累计平均降水量8.8毫米,较常年少75%,旱情再度发展。灾害造成玉溪、昭通、楚雄等16市(州)106个县(市、区)589万人受灾,197.6万人因旱需生活救助,其中156.6万人因旱饮水困难需救助;农作物受灾面积871.7千公顷,其中绝收33.9千公顷;饮水困难大牲畜46.8万头(只);直接经济损失34.9亿元。
(文图:赵筱尘 巫邓炎)